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The containment of an oil slick by a boom placed 
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A small region (called the surface tension region) where pressure differences across the 
oil-water and oil-air interfaces are important is shown to exist between the gravity 
viscous and monolayer regions in a spreading oil slick (Di Pietro, Huh & Cox 1978). 
The importance of this new region is that (i) it is necessary in order to connect the 
gravity-viscous and monolayer regions and (ii) it is a region where slopes of interfaces 
are large. This idea is used to find the thickness profile of an oil layer contained up- 
stream of a barrier (an oil boom) placed across a channel in which water is flowing at a 
constant velocity. The assumption is also made that the velocity difference across the 
oil layer is small compared with the water velocity. The general conditions for the 
validity of the results are then discussed together with the modifications to the theory 
which are necessary if the boundary layer in the water below the oil should be tur- 
bulent rather than laminar. Good agreement is found to exist between experimental 
results for unsteady spreading on quiescent water in a channel and the results of the 
theory applied to this situation assuming quasi-steady spreading. 

1. Introduction 
The behaviour of a liquid (such as an oil) spreading on the horizontal surface of a 

second, immiscible, liquid (such as water) as the result of gravity and surface tension 
forces is considered. It is known (Adamson 1967) that when the Harkins spreading 
coefficient (Harkins 1952) is negative, the spreading liquid spreads on a quiescent 
substrate to  form an equilibrium shape in the form of a lens, whereas when the spread- 
ing coefficient is positive, it continues to spread indefinitely until all the available 
substrate surface is covered by a layer which may be of molecular thickness (Pujado 
& Scriven 1972). We consider here only this latter situation for which many experi- 
ments have been undertaken to observe the rates of spreading (Landt & Volmer 1926; 
von Guttenberg 1941; Burgers, Greup & Korvezee 1950; Lugton & Vines 1960; 
Marwedel & Jebsen-Marwedel 1961; Banks 1957; Ahmad & Hansen 1972; Langmuir 
1936). It has been observed that with some systems, the deposition of an oil on the 
water-air interface results in a band of molecular thickness (which will be referred to 
as the monolayer) to spread ahead of the bulk liquid (Mercer 1939; Zisman 1941; 
Mar & Mason 1968). 

Recent attempts to understand the mechanics of the spreading process have been 
made by Fay (1969), Hoult (1972), Buckmaster (1973), Wicks (1969) and Garrett & 
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Barger (1970), who have derived estimates of spreading rates for situations where 
various driving and dissipation forces are assumed to dominate. Di Pietro (1975) 
and Di Pietro et al. (1978; hereafter referred to as DHC) have given a detailed deriva- 
tion of the equations determining the spreading for both the monolayer and also for the 
thicker region of the spreading liquid (which will be referred to as the bulk layer) 
where it may be considered as a continuum. For the monolayer spreading they assumed 
that horizontal gradients of surface tension due to variations in monolayer thickness 
(or equivalently to the surface concentration of the spreading liquid) caused the 
spreading. The equations they obtained consisted of (a) a continuity equation for the 
spreading liquid, (b )  a balance between the surface tension gradient and the drag due 
to the boundary layer in the substrate, ( c )  an experimentally determined relation 
between the surface tension and the concentration of the spreading liquid, and (d)  a 
relation between the velocity and stress a t  the monolayer obtained by solving the 
boundary-layer equations within the substrate liquid. However in the bulk layer they 
assumed that gravity and surface tension (resulting in pressure differences across the 
various interfaces) cause the spreading and by the use of lubrication theory obtained 
the equations determining the spreading. These consisted of (a) a continuity equation 
for the spreading liquid, ( b )  a vertical force balance equation, (c) a horizontal force 
balance equation, and (d) a relation between the velocity and stress on the spreading 
liquid due to the substrate obtained by solving the boundary-layer equations within 
the substrate. 

As a special case, DHC also considered the steady-state situation where, on a 
substrate liquid flowing with a constant speed U along a channel, a constant volume 
per unit width V of spreading liquid is held against the flow by means of a barrier 
placed perpendicular to the flow and projecting below the water surface a distance 
sufficiently large to prevent the spreading liquid from seeping past (figure 2). For this 
situation, they solved numerically the equations for both the monolayer and bulk 
layer when certain additional simplifying assumptions were made. In this manner the 
horizontal sizes of monolayer and bulk layer were obtained as well as the spreading- 
layer thickness at the barrier. 

The purpose of the present paper is to investigate new perturbation solutions of 
the governing equations. It is seen that over most of the region occupied by the bulk 
layer, gravity rather than surface tension is the driving force. This we will refer to as 
the gravity-viscous region (see Hoult 1972). However a t  the edge of the bulk layer, 
between this gravity-viscous region and the monolayer there exists a small region 
of only a few millimetres in width where surface tension replaces gravity as the 
driving force. This region, which will be referred to as the surface-tension region, is 
found to be important because (i) it is necessary in order to connect the solutions in 
the gravity-viscous and monolayer regions, and (ii) it is a region where the slopes 
of the interfaces are largest and is thus important in considering the validity of the 
theory. 

A simplification of the general theory for when the velocity variation across the 
bulk layer is either much smaller or much larger than that across the substrate 
boundary layer is then discussed. 

These results are then applied to the steady-state situation (considered by DHC), 
where on a substrate liquid flowing along a channel with velocity V, a volume V per 
unit width of spreading liquid is held against the flow by a barrier projecting below 
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FIGURE 1. The spreading of an oil (phase 1) on the surface of water (phase 2). 

the water surface. The spreading liquid thickness profile is thus found for the situation 
where the velocity difference across the spreading layer is everywhere small. In 
particular the total length of the spreading layer and its depth at the barrier are found 
as functions of I' and V .  Such calculations are useful in determining the effectiveness 
of oil containment booms. The general conditions of validity of the results are then 
discussed together with the modifications to the theory which occur as the result of 
the substrate boundary layer becoming turbulent. 

Finally, a comparison is made between the available experimental results for 
unsteady spreading of a fixed volume of liquid on the surface of a quiescent substrate 
contained in a channel and the predictions obtained from the theoretical results 
obtained in this paper when applied to this situation (assuming motion to be quasi- 
steady). 

2. Surface tension and gravity-viscous regions 
We consider for the moment the general situation in which a liquid, phase 1 (which 

will be referred to as an oil), spreads over the surface of a substrate liquid, phase 2 
(water), which may either be quiescent or moving with some prescribed motion. 

As shown in figure 1 (using the same notation as DHC), the viscosity and density 
of the oil are denoted by ,ul and p1 and of the water by ,uz and pz. The surface tensions 
of the oil-water, oil-air and water-air interfaces are respectively written as u12, ~ 1 3  

and crz3, so that the Harkins spreading coefficient referred to in 5 1 is 

= u23 - ('12 + u13)' 

(%a/(& - P A  9)) 

(2.1) 

Since the capillary length-scale (uIs/p1 g)H for the oil-air interface and 

for the oil-water interface are normally of the order of a few millimetres, they are 
usually very much smaller than the characteristic horizontal length scale B of the 
region occupied by the oil (except for the initial stages of spreading of a very small 
volume of oil). It will thus be assumed that the two capillary length-scales are of the 
same order of magnitude and that 

so that expansions may be made in terms of this parameter 7. Taking Cartesian axes 
5, y ,  z with the z axis vertically downwards (see figure I) ,  and the origin on the same 
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level as the undisturbed water-air interface (in the absence of flow), we let the oil- 
water, oil-air and water-air interfaces be given by z = hla, h13 and ha8 respectively 
so that within the bulk layer, the layer thickness H = hu-h13. We define ‘outer’ 
non-dimensional independent variables as 

2 = x/B, 9 = y/B, f = tU/B, (2.3) 

and dependent variables as 

where U is a characteristic spreading speed, u* the (horizontal) velocity and T* the 
stress on the oil at  the oil-water interface. The equations valid for the bulk layer 
obtained by DHC may then be written as 

aA+$.(BQ*)-*$.(B.9*) = 0, 
a€ 

and 

where 

and where 6, 6., etc., are horizontal surface operators with respect to the 2,9 variables 
(i.e. 6 = a p g ,  a/*). 

Expanding fi13, h12, fi and Q * (and also if necessary +*) in terms of 7 ag 

and substituting into (2.5) to (2.7), it is 580n that the lowest-order solution satisfies 

and 
A** = $$(~,,),. 

(2.11) 

(2.12) 

In  these equations the terms involving the interfacial tensions of the surfaces do not 
appear. Also since these terms involve higher-order derivatives, it is expected that in 
order to make an expansion in terms of 7, another region of expansion (of boundary- 
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layer type) must exist possibly a t  the contact line where the bulk layer joins the 
monolayer. Also from (2.11) it is observed that 

80 that (2.12) may be written 

(2.13) 

At any point on the contact line, take k normal and ij tangential to the contact 
line with the 4 axis directed towards the bulk region. Expanding the stress T* as a 
Taylor series for small 2 and noting that since u = a,, + a13 is constant along the 
contact line and that in the monolayer VU+T* = 0, it follows that r$ = 0 while 
may be taken to be constant to tshe lowest order in 2. Thus as 2+ 0, it follows from 
(2.13) that 

giving 

fi, ( * 2 + g ) f W + 0 ( ~ )  as 2+0.  
P1 

Thus by (2.11) 

(2 .14a)  

(2.14 b )  

( 2 . 1 4 ~ )  

Equation (2.13) and hence the above expansions for 2 --f 0 cannot apply a t  the contact 
line since in general +* would be non-zero in (2.13) whereas by the continuity of the 
interfaces and by the balance of vertical force components (see DHC) both f i0  and 
$111, must be zero. 

Thus at  a general point on the contact line an ‘inner ’ expansion in 9 is made by 
choosing the 4, $2 co-ordinates with origin at the chosen point on the contact line and 
defining inner 5, B co-ordinates as 

& = B / r ] ,  p = g / r ]  and t = t .  (2.15) 

If the origin of co-ordinates moves with fluid at  the contact line, then in the Z, 
variables, the equations (2 .5 )  to (2 .7 )  remain valid except that Q* is now interpreted 
as the fluid velocity relative to the moving origin so that ii* = 0 at 2 = 9 = 0. If the 
contact line is assumed to  be smooth with curvature of order unity, then it may be 
written as 

2 = AQ2, (2.16) 
where A is of order unity. 

Thus in inner variables it is 
Z = A@2 (2.17) 

so that to lowest order in 7 the contact line can be taken as the straight line Z = 0. 
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In terms of these inner variables, the values of 8, Lla and Ll8 from (2.14) become 

( 2 . 1 8 ~ )  

(2.18 b )  

( 2 . 1 8 ~ )  

from which is it seen that matching on to the inner expansion requires that 8, hla 
and hlS must be of order vib. Thus we define inner dependent variables such that 

I?= 87-4, El, = L12+, El, = LIST)t,  ii* = O*r]--t, +* = **, (2.19) 

so that in the inner region of expansion (2.5) to (2.7) become 

and 
I aEi 

714 + V*(Eiii*) - *V.(R*+*) = 0, 

P2 - P1 

I - -_  ---  
A"* = H(Vh12-VVah1J. 

Thus we expand Ella as 

with similar expansions for E12, R and ii*. Thus 

Els = ( j i1&+0(~~) as p+O 

V*(Roii$) - p ( R $ ? * )  = 0, 

(2.20) 

(2.21) 

(2.22) 

and 

The second term in the expansion (2.21) is, for unsteady motions (such as the expansion 
of a given volume of oil from some point), of order 74. However for steady motions 
such as the one considered later for the containment of oil upstream of a boom across 
a uniform stream, the term 74 aR/at appearing in (2.20) is zero so that the second term 
in the expansion (2.21) is of order q+l [which is required for the matching onto the 
term of order T,I* in (2.18)]. 

At Z = 0, the contact line, since the interfaces must meet and since vertical force 
components must balance, 

(2.23 a) 

A?* = Ro(V(E12)o - VV*(E12)0). 

(%2)0 = ( h 3 ) O  = E23, 

(2.233) 

where E2, = +((pa - pl)  g/v12)*  h,, and aza3/aZ at the contact line are functions of 
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B which to the lowest order in 7 may be taken as constants. Also the required matching 
on to the outer expansion is, by (2.18), 

( 2.24 a) 

(2.24b) 

Thus it is seen that the boundary conditions for (ElJ0 and (E13)0 do not involve ij so 
that one expects the solution of (2.22) satisfying these boundary conditions for a given 
value of ?* to be a function of Z only. Thus (2.22) takes the form 

a -  a3 - 
h?,* = g o  (E (h1Z)O - &3 (h12)O) * 

I 
(2.26) 

It is noted that whereas in the outer region of expansion gravity effects dominate 
over surface tension effects (the surface tension effects being negligible at  lowest order), 
in the inner region these effects are equally important. However, in this inner region 
there is the simplification that at the lowest order there is (i) no variation in the jj 
direction [i.e., the flow is two-dimensional] and (ii) the stress ?* is in the Z direction 
and may be taken to be constant. For convenience we will refer to the outer region as 
the gravity-viscous region [being the same as the gravity-viscous region referred to 
by Fay (1969) and Hoult (1972)l and to the inner region as the surface-tension region. 

3. Small and large velocity variations across the oil layer 
The dimensional velocity at the oil-air interface u(h,,) is given by DHC as 

I 

- - -- A HT*. 
2Pl 

Thus since the stress T* due to the boundary layer is of order P ~ ( A u ) B L / ~  where 
(Au)BL is the velocity difference across the boundary layer and 6 is the boundary- 
layer thickness, it  follows that 

where ( A U ) ~ , ~  = Iu(h13) -u*l is the velocity difference across the oil layer. Thus if 
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4 I ,d 
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FIGCRE 2. A volume L' per unit width of oil held against a flow of velocity C 
along a channel by means of a barrier projecting below the water surface. 

---G=Fx- 

- -  - -  
FIGURE 3. Sketch of velocity profiles for the case of a small velocity difference across the oil layer 
for (a) spreading on a quiescent substrate and (b) spreBding against a uniform flow upstream of a 
barrier. 

it  follows that the magnitude of the velocity difference across the oil is very much 
smaller than that across the boundary layer. 

For oil spreading on water a t  rest (bu),,, = Iu*I, so that by writing the continuity 
equation (see DHC) in the form 

it is observed that whereas the first two terms are of order Hlu*I/B the third term 
is of order HI u * I B-lh, HIP,  8) and is thus negligible so that 

Z + V . ( H " * )  = 0. (3.4) 

This is the expected form of the continuity equation since the velocity is approximately 
u * at all points across the oil layer (see figure 3a).  

For oil held in a steady-state configuration upstream from a barrier in a uniform 
flow along a channel (figure 2) (the case considered by DHC), Ju*l -N 0 so that the 
boundary layer in the water is the Blasius boundary layer (see figure 36) for which 
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. 
---B--- 

FIGURE 4. Sketch of velocity profiles for the case of a large velocity difference across the oil layer 
for (a) spreading on a quiescent substrate and ( b )  spreading against a uniform flow upstream of a 
barrier. 

the value of T* is known. The thickness of the oil is then determined by the horizontal 
and vertical force balance equations alone (see DHC). 

If the opposite situation to that discussed above holds so that 

then the magnitude of the velocity difference across the oil is very much larger than 
that across the boundary layer (see figure 4). The velocity u* may then be taken 
as the given velocity of the water below the boundary layer (0.g. u * = 0 for oil spread- 
ing on water at rest) and so the thickness of the oil may be obtained from the vertical 
force balance and continuity equations alone (see DHC) while the horizontal force 
balance equation gives the value of T*. The boundary-layer equations valid in the 
water may then be solved with this known value of.r*. 

4. Spreading of oil against a uniform flow 
The steady-state situation considered by DHC is now discussed where on water 

flowing with velocity r’ along a channel, a fixed volume of oil is held against the flow 
by means of a barrier (see figure 2). We take the origin of axes at  the contact line 
(between monolayer and surface tension region) with the x axis in the direction of the 
flow and let the position of the lending edge of the monolayer be x = -d  and of the 
barrier be x = 1. Then since the flux of oil is zero a t  all points in the monolayer region 
(see DHC), u* = 0 there. It is also zero in the surface tension and gravity-viscous 
regions at  all values of x for which (3.3) is satisfied. 

We will assume that in fact (3.3) is satisfied throughout (i.e. for 0 c x < I )  (and 
examine later the conditions of validity of this assumption) so that the boundary 
layer in the water is a Blasius boundary layer which exerts a stress T* = (7*, 0,O) 
on the oil given by 

7* = a(p2pz V3)4 (x+d)-4 where a = 0.33206. (4.1) 
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may be integrated to give 
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VIT+T* = 0 

a = 1 ~ 2 3  - 201(/~, ~2 U')+ (X + d) t ,  

where it has been noted that r = rZ3 a t  x= -d. Since at the contact line x = 0, Q 

is equal to a,,+ u13, it  follows that 

d = S2/4a~U3pz~z ,  (4.3) 

where S is the spreading coefficient given by (2.1). 

force balance equations (see DHC), which take the form 
In the bulk region, the oil thickness is determined by the vertical and horizontal 

(4.4a) 
d2 

ax2 
- ( r i z h i z +  gi3hi3)-g[(Pz-Pi) h i z + ~ i h i 3 1  = OY 

(4.4b) 

It is assumed that d and I are both much larger than the capillary length scales so that 
an expansion may be made in the surface tension (inner) and gravity-viscous (outer) 
regions as described in 3 2. Taking the length scale B to be equal to d, the expansion 
parameter r] is 

Expressing (4.4a, b)  in outer variables (as in 2), one obtains 

( 4 . 6 ~ )  

(4.6b) 

Substituting into these equations the expansions (2.9), it  is seen that (&3)0, (&2)o 

and 

(4 .74  

satisfy [see (2.11) and (2.12)] 

( L ) o  +El P1 (&3)0 = O, 

while (&3)1, (hlz)l and B1 satisfy 

(4.7b) 

(4.8a) 

(4.8b) 

Since = (i12)o - (&3)o, the quantities (&J0 and (A13)o may be eliminated from 
(4.7a, b) to give 

(4.9) 
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which poasesae~ the general solution 

f f o  = (y ( - 3 [ 2 ( 2 +  l)*+R1]4 
where Kl is 8 aonstant, 

Since for matching on to the inner expansion -+ 0 as 2 -+ 0 it follows that Kl = - 2, 
therefom 

f f o  = 4 2  k)+ ($)i[(2+ 1))- 114. 
Thus, frsm (4.7a), 

The solution of (4.8a, b) is obtained as 

=12 

(4.10a) 

(4.10b) 

(4 .10~)  

(4.11) 

where K is an arbitrary constant of integration. Thus the outer expansion is 

As x+ 0. 

&,=fil? and iI3 = -- P2-Plff  . 
P2 P S  

f g e 4 - @ +  . . . ]+~K[6?- t+@$+. . . ]+ . . . } ,  (4.13) 

which when expressed in inner variables defined as in Q 2, becomes 

Thus if the inner expansion is of the form (2.21), it is seen that matching requires that 

(4.15a) 

(4.15 b )  

with similar asymptotic forms for (E12)o, (E12)1, (z1J0 and (&)l being determined by 
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FIGURE 5. Values of s ( p l / p 2 ) t  (cr12/,.!j')i as a function of 4: - .-, values given by (4.13) for 7 = 0; 
--- , values given by (4.13) for 7 = 0.16 and 7 = 0.64; -, numerical values determined by 
DHC for 7 = 0.16 and 7 = 0.64; - -- -, agymptotic form for 2 + co given by (4.24). 

(E12)o = (pl/pe)Ro, (El,,), = - [ ( p z - p l ) / p , ] ~ o ,  etc. Expressing (4.4~2, b )  in inner vari- 
ables, one obtains 

(4.16a) 

(4.16b) 

which, upon substitution of the expansions (2.21), yields the equations for Eo, ( E l p ) o ,  

etc., as 

and the equations for ITl, (El&, eta,  &S 

(4.17 a) 

(4.17 b )  

(4.18a) 

The lowest-order inner solution thus satisfies (4,17a, b )  and the required boundary 
conditions a t  Z = 0, namely 

('12)O = ('13)O = (&23)0 (4.19 a) 
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and 

(4.19 b )  

The normal stress balance across the monolayer (see DHC) yields, for -d  < x < 0, 

(4.20) 

The asymptotic solution of (4.17 a, b )  for 3 -+ 00 may [by substituting Z = e-lz where 
c+  01 be found to be exactly that given by ( 4 . 1 5 ~ )  so that the matching condition is 
thus satisfied, In general the equations (4.17a, b )  and (4.20) with boundary conditions 
(4.19a, b )  must be solved numerically, a comparison with the asymptotic form ( 4 . 1 5 ~ )  
then giving the value of the constant K .  This value is a function of p1/p2, ~ 1 3 / ~ 1 2  

and c~(z)/a,, [but not of 5/ul, since from (4.17) it  is seen that go, and (h13)o may 
all be taken proportional to (S/u,,)t]. For the particular case for which (p2/p1 - 1)  < 1 
and ~ 1 2 / ~ 1 3  4 1 (which implies that h,, and h,, are negligibly small), numerical 
solutions were obtained by DHC and a comparison of their results with ( 4 . 1 5 ~ )  gives 
K = - 0.42 for that particular situation. Values of l? given by (4.12) and valid in the 
outer region of expansion have been plotted in figure 5 where the numerical solutions 
of DHC are given for comparison. 

It is noted that 

(4.21) 

from which it is seen that it is impossible (as mentioned previously) to join this solution 
on to the monolayer solution without the intervening inner (surface tension) region. 

Also, from (4.12), it  is seen that 

(4.22) 

The volume V per unit width of oil is 

(4.23) 

if the amount of oil in the monolayer is negligible. Thus writing 

and 

it is seen that 

Dividing the range of integration into two parts, 

(4.24 a) 

(4.24 b )  

(4.26) 

one part being 0 < 2 < a (or 
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I I I 1 I I I I 
0 5 .o 10.0 

I 

FIGURE 6. Values of ?(p,/p,)* (u,,/S,J as a function of I?:--- ,  values given by (4.29) for 9 = 0; 
--- , values given by (4.29) for v = 0.16 and 7 = 0.64. -, numerical values determined by 
DHC for 9 = 0.16 and 7 = 0.64;----, asymptotic form for E +cc [see (4.31)]. 

0 < 2 < aq-I), where a < 1 and the other a < 2 Q f, it is seen that one may evaluate 
the integral over the former part using inner variables so that 

P = Jo a7-l rrq+dz+J:8de - 

F 
= Jou7-'r]t[Bo+q~l+ ...I dz+/ [$+qB1+ ...I d$. (4.26) 

00, the f ist  integral is evaluated by subtracting off from the 

a 

Since as q -+ 0, aq- 
integrand the part which makes the integral diverge ap r] 3 0. Thus (from (4,/7)), 

P = r]tJoa7 {IT,, - k) 4 / 3 4  (-) [a + ~n-41)  az 
(712 

* 7- @ B + g m +  ...I b z  +r]qoa7-'pl-@ (z) I 
+qt  ' ' ' { tr]-+a++2~+a*} 

(P,) (GI 
+ r ] )  (&)*{-hr]-tat+&Kr]+a*+ ...I 

+/:e) (--) y'2{[(e++)f-1]4+.HK71[(4+ i ) ~ - l J - - ~ +  ...I d2, 
' s 4  
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which, since a < 1, reduces to 

Actually, if the contact angle is given at  the barrier a t  x = 1, the above volume 
will be in error by a term of order 7 (since V will be in error by an amount of order 
u12/(p2-pl) 9) .  However, since the contact angle produced by the above solution 
(4.13) approaches 90' as 7+0, it follows that the error in (4.27) must be o(7) for a 
given contact angle of 90" at the barrier (as was the case for the calculations of 
DHC). P is plotted against f in figure 6 where the numerical results of DHC are also 
given for comparison. In  dimensional form (4.27) is 

55 
V = (  C r 6 A  P1 PAP2 - PI)  9 )'g{$[@+ I)$-  1]*+%[(%+ I)*- 1]4+ ...}. (4.28) 

When t is large (i.e. 1 B d )  so that the bulk layer is much longer than the monolayer, 
(4.28) gives 

(4.29) 

so that in terms of volume V and flow velocity U ,  the length 1 of the bulk layer is 

(4.30) 

To prevent loss of oil under the barrier at x = 1 it  must project a distance h, below the 
undisturbed water level, where 

h, = h&, = ( ulz )+ ff,,l&i, 
(Pz - P1) 9 

which by (4.12), reduces to 

For the present case off large, this gives 

or, by (4.30), in terms of C7 and V as 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

Thus, the necessary barrier depth h, increases with both U and V as expected. For a 
given barrier depth h, and flow velocity T', the maximum volume V of oil retained 
(if 1 B d )  is thus 

(4.35) 
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On the other hand, when the length of the bulk layer is much smaller than the mono- 
layer (but also much larger than the capillary length scales) so that ,? is small, the 
length I of the bulk layer obtained from (4.28) is 

(4.36) 

The necessary barrier depth hi for this case is [from equations (4.32) and (4.36)] 

(4.37) 

Again, for this case, ?+ increases with both r' and V .  For given h, and U ,  the maximum 
oil volume reta'ined is obtained from (4.37) as 

(4.38) 

The condition I B d for the validity of (4.29), (4.30), (4.33), (4.34) and (4.35) may be 
expressed as 

(4.39) 

so that it follows that the bulk layer is much larger that the monolayer a t  large flow 
speed C and/or large oil volume V.  The condition I < d for validity of (4.36)-(4.38) 
is opposite to that given by (4.39). In  figure 7, the values of 

P @ 1 ~ 1 2 / ~ 2 ~ ) *  = 4 a 2 v ( 6 r 6 ~ i ~ 1 ~ 2 @ 2 - ~ 1 )  S/SV 
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given by (4.27) and of hl(p2(p2-pl)g/plS)3 given by (4.32) are plotted against 
f = 4a21( C3p2p2/S2) for 7 = 0 together with their asymptotic forms (4.29) and (4.33) 
for f e r n .  These graphs enable one, for a given oil volume V and flow speed CT, to 
obtain the bulk layer length 1 and the depth h, at the barrier. Also for given barrier 
depth h, and flow speed I', the maximum oil volume V (as well as bulk layer length I )  
may be obtained. 

The order of magnitude of the oil thickness in the surface tension region (i.e. for 
fixed Z) at a position near where it joins the gravity viscous region may be obtained 
from ( 4 . 1 5 ~ )  as 

(4.40) 

Also, in a similar manner the order of magnitude of the rate of increase d H / d x  of oil 
layer thickness at such a position is 

dH - ( ~ 1 2  )i + 4a2LT3,4 d R  - 
d x  (P2-P1)9 S2 dZ 

(4.41) 

5. Conditions of validity 
In  the derivation of the results obtained in Q 4, various assumptions have been made. 

These include (i) the assumption of a small velocity variation across the oil layer; 
(ii) the assumption that the monolayer and bulk layer lengths are much larger than 
the capillary length scale; (iii) the assumption that the interfaces have small slopes; 
(iv) the neglect of inertia effects in the oil; (v) the neglect of pressure variations in the 
substrate flow; (vi) the assumption that the boundary layer in the water is laminar; 
(vii) the assumption of no depletion of the monolayer. The necessary conditions for 
the applicability of each of these assumptions will now be discussed. 

(i) Small velocity variation across the oil layer. The condition for the velocity variation 
across the oil layer to be much smaller than that across the boundary layer is given 
by (3.3). Since the order of magnitude of the boundary-layer thickness (as defined 
in 5 3) is 

and the oil layer thickness in the gravity-viscous region is given by (4.12), it follows 
that (3.3), for the gravity-viscous region, is 

The function {[(& + 1)) - l]/(& + 1))) increases from zero at 2 = 0 to a maximum value 
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of 4 at 2 = 3 and then decrease to  zero as $+=a. Thus the condition (3 .3 )  is satisfied 
for all 2 if the maximum value of the left-hand side of (3 .3)  is small, i.e. if 

(5.3) 

However, if (5 .3)  is not satisfied, p 2  H/plS is only small for 2 = x/d less than some 
critical value determined by (5.2). In  fact, p2H/,ulS will not be small even in the 
surface tension region if (3 .3)  is violated with H given by (4.40) and S by (5.1) (with 
2 1: 0), i.e. if 

Should the condition (3 .3)  be violated for any value of x, then a t  that value of x and 
at  all points downstream the boundary layer would not be of Blasius type. 

(ii) Lengths of monolayer and bulk layer large. For the expansion procedure described 
in 9 2 to be valid the capillary length scale must be much smaller than (a)  the length 
of monolayer (so that 71 is small) and ( b )  the length of bulk layer. These conditions 
mav be exmessed as 

L 

and 

respectively. While the first condition may be written as 

the second may, by using (4.30) and (4.36),  be expressed as 

It is noted that whereas (5.5) is satisfied if the flow velocity tT is small enough, (5 .6 )  
and (5 .7)  require that either I' is small enough or the oil volume V is large enough. 

(iii) Slope of interfaces small. For the lubrication theory described by DHC for the 
oil motion in the bulk layer to be valid dH/dx  must be small everywhere. In  the outer 
region of expansion dH/dx  may be obtained from ( 4 . 1 0 ~ )  as 

dH - = J2 a2 ( s3k;paap~ )* ( 1  +ti?)-* [( 1 + $)4 - 1 1 - 4 ,  
ax 1 P2-P1)9 

which is a monotonically decreasing function which + co as 2 + 0 and + 0 as 2 --f co. 
Thus dH/dx  must attain its maximum value in the surface tension region, this value 
being given by (4.41).  Thus the condition that dH/dx  is small everywhere, may be 
written as 

S20-12P2,(P2-P1)9 ' 
Paa P i  > .  u e  ( 
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In  a similar manner the condition for the slope of the oil-water interface to be small 
may be obtained as 

Should this condition be violated, then there is the possibility that one may get 
boundary-layer separation in the surface tension region which would affect both 
boundary layer and oil thickness profile downstream of this region. However, this 
would not occur (the boundary layer being modified only in a minor way) if the 
boundary-layer thickness (vZd/L')f  is very much larger than the depth variation of 
the oil-water interface in the surface tension region [determined in a manner similar 
to (4.40)], i.e. if 

(5.10) 

Thus if both (5.9) and (5.10) are violated, there is the possibility of boundary-layer 
separation. 

(iv) Neglect of inertia eSfects in the oil. The condition for the neglect of inertia effects 
in the oil layer (see DHC) may be written as 

L< dH 
vl dx 
- H - <  1, (5.11) 

where is the characteristic velocity locally in the oil layer. For situations where the 
velocity variation across the oil layer is small compared to that across the boundary 
layer [see assumption (i) above], 

Thus, condition (5.11) becomes 

EL - ( A u ) ~ ~ ~  in (3.2) so that 

which when expressed in outer variables by (5.1), (2.3) and (2.4), becomes 

Substituting the value of B given by (4.10a), one obtains 

The expression (2+ 1)-1[(2+ 1)4-  114 increases from zero at B = 0 and attains a 
maximum value of 9/16,/3 a t  2 = and then decreases to zero as 2+ co. Thus, inertia 
effects in the oil are negligible everywhere if 

(6.12) 

(v) Neglect of pressure variations in substrate jlow. The flow in the substrate is 
disturbed from its uniform motion by (i) the depression of the oil-water interface 
below the bulk layer and (ii) the finite thickness of the boundary layer. Since the 
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vertical component of velocity a t  the oil-water interface is of order Udh12/dx,  the 
inviscid disturbance flow due to the depression of the oil-water interface is of this 
order. Thus, the flow fluid in the water below the boundary layer is of the form 
Ci + O( TT dhlz/dx) ,  where i is unit vector in the x direction. Then, using Bernoulli's 
equation, we obtain the pressure variations in the substrate at  any point near the 
oil-water interface as being of order p2 C2dh12/dx, giving rise to an additional stress 
on the oil of this order in the vertical direction. This has a negIigible effect if it is small 
compared with the stress pz gH, i.e. if 

or in terms of outer variables [using equation (4.10)], if 

(5.13) 

(5.14) 

Since the expression [( 1 + 8)4 - 11-1 (1 + 9)-3 is unbounded as 8-t  8, it follows that the 
effect of substrate pressure variations is greatest in the surface tension region. Thus 
(5.13) is satisfied everywhere if it is satisfied for characteristic values of H and dh12/dx 
valid in the surface tension region. This gives 

(5.15) 

as the required condition for the neglect of substrate pressure variations due to 
depression of the oil-water interface. 

In  a similar manner it is seen that the substrate pressure variations due to the 
boundary-layer displacement thickness are negligible if 

U2 1 d8 --- < 1. 
g H d x  

(5.16) 

Again it is seen that this condition is most likely to be violated in the surface tension 
region, so that by substituting the characteristic values of H and 6 given by (4.40) 
and (5.1), the condition that the effect of the boundary-layer displacement thickness 
is negligible everywhere is that 

(5.17) 

However, this condition may be too severe since we have used the value pz U2d6/dx  
[which by (5.1) is of order p 2  C2(v2/dT')i] for the order of magnitude of the pressure 
variations on the oil-water interface, whereas (Van Dyke 1964) it  is known that for 
a boundary layer on a flat plate in a uniform stream the pressure variation is smaller 
by a factor of (v2/d 72)k 

(vi) Assumption that the boundary layer is laminar. Throughout the entire monolayer 
and also for the bulk layer where condition (3.3) (that the velocity across the oil layer 
is small) is satisfied, the boundary layer in the substrate is identical to that on a flat 
plate. This boundary layer is laminar at  a distance ( x  + d )  from the leading edge of the - 
monolayer if (Schlichting 1968) 

LT(x + d )  
v2 

< Re,, (5.18) 
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where Re, is a critical Reynolds number whose value is of the order 3.6 x lo6 to 
1.0 x lo6. Thus, from (4.3), it  is seen that the boundary layer is laminar beneath the 

this corresponding to a size d of monolayer with 

d < (2a) (Re,)# &. 
Pas' 

(6.19) 

(6.20) 

which is approximately 60 m for S = 10 dyn om-1. Also, when the size ( 1 )  of the bulk 
layer is much larger than the size of the monolayer, it is seen from (4.30) and (6.18) 
that the boundary layer is laminar beneath the entire bulk layer if 

this corresponding to the size 1 of layer for which 

(5.21) 

(6.22) 

(vii) No depletion of monolayer. It may be noted that if the volume V of oil is reduced 
keeping the flow velocity L' fixed, then a stage will be reached when there will be no 
bulk layer. Should this occur then after a further reduction in V ,  the surface tension 
a t  the barrier will drop below the value u12 + uI3 so that the monolayer length will no 
longer be given by (4.3). This will occur when 

(5.23) 

where E is the mean thickness of the monolayer. Such a depleted monolayer therefore 
occurs for small oil volumes and for small substrate velocities. 

6. The effect of the turbulent boundary layer 

dominately turbulent if 
From (5.19) and (5.21) it is seen that the boundary layer in the substrate is pre- 

either 

or 

S C [ (2a)-1 (Re,)-+] - 
Pa 

Under such conditions the stress 7* (assuming small velocity difference across the 
bulk layer) on the oil (Schlichting 1968) is 

L' 4 
7* = utp2 c 2  (--) (x + d)-* where at = 0.029. (6.3) 

Repeating the previous analysis by replacing the expression (4.1) for T* by (6.3), we 
obtain the following results. 
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(i) The length d of monolayer is [cf. equation (4.3)] 

The thickness H of the oil in the gravity viscous region is [cf. equation (4.1Oa)l 

s +  
H = 4 2  @* ( ) {(&+ 1)L-  l}*, 

@a - P1) 9 

where 2 = z /d  and d is the monolayer length given by (6.4). From this expression it is 
seen that the length I of the gravity viscous region, when it is much larger than d, is 

the height h, of oil a t  the barrier then being [cf. equation (4.34)] 

(ii) The condition that I be very much larger than d [so that (6.6) and (6.7) are 
valid] is [cf. equation (4.39)] 

(iii) The condition for small velocity variation across the bulk layer compared with 
U, which for a turbulent boundary layer should be more properly used in the form 
HT*/~, U + 1, reduces to [cf. equation (5.2)] 

Since the left-hand side increases monotonically with 2 and +co as &+a, it follows 
that the condition is most likely to be violated at  the barrier at  2 = l / d .  Thus, for the 
gravity viscous dominated situation ( E  >> d) ,  it is seen that the velocity variation 
across the oil is small everywhere if [cf. equation (5.3)] 

(6.10) 

(iv) The length of the surface tension region is much smaller than the monolayer 
length d if [cf. equation (5.5)] 

c + ( ( A  - ~ 1 ) ~  g2 8') f 

Pa Pb e 2  

and much smaller than the bulk layer length if [cf. equation (5.6)J 

for 19 d. 

(6.11) 

(6.12) 
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(v) For slopes of interfaces to be small (i.e. d H / d x  < 1) we require 

635 

the left-hand side of which is a monotonically decreasing function which +co as 
9+0. Thus, interface slopes are greatest close to surface tension region and the 
condition that they are small everywhere is thus [cf. equation (5.8)] 

(6.13) 

(vi) The condition for the neglect of inertia effects in the oil may be written as 

r* dH - H 2 -  4 1, 
PlV1 dx 

which reduces to 

{(1+9)+-1}4(1+9)-~ .g 1. 
(P! P?f-:1)' SS)t (6.14) 

Thus, since the left-hand side is bounded for all 9, the condition for the neglect of 
inertia everywhere is [cf. equation (5.12)] 

(6.15) 

(vii) The condition (5.13) for the neglect of pressure variations in the substrate flow 
now reduces to [cf. equation (5.14)] 

(6.16) 

the left-hand side of which is unbounded as D + 0. Thus, the effect is most likely to be 
important in the surface tension region, the condition for its neglect everywhere being 

(6.17) 

which is seen to be identical with (5.15). 
(viii) The condition for the monolayer to become depleted is [cf. equation (5.23)] 

u < (:at)' (-)+. 55€4 

P2P% v4 (6.18) 

7. Conclusions 
For any particular spreading fluid, the general behaviour (determined by the 

results of $9 4-6) of a volume V per unit width of the fluid held in a steady state 
configuration against a uniform flow U by a barrier may be represented on a UV 
graph on which the various spreading regimes are indicated. This has been done in 
figure 8 for a fluid for which pl = lop, p1 = 0-9gcm-3, S = v12 = 10dyncm-l 
spreading on water (p2 = 10-2 P, p2 = 1 g cm-'). Thus the values of U and V for the 
gravity-viscous regions with laminar (region A )  and turbulent (region B)  boundary 
layers are shown, as are also the monolayer regions with laminar (region C )  and tur- 
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FIQWRE 8. The various regimes of spreading behaviour for oil of volume V (emz) per unit widt,h 
held in a steady-state configuration against a uniform flow of velocity Z' (ems-*) (p l  = lop, 
pa = lO-ZP, p1 = 0.9gcm-8, ps = 1.0gcm-8, S = blp = 10dyncm-1). - - -, lines of constant 
length of layer (measured in om);---.-, lines of constant layer thickness at barrier (measured 
in cm). 

bulent (region D) boundary layers and the depleted monolayers with laminar (region 
E )  and turbulent (region F )  boundary layers. The lines of constant layer length and of 
constant depth a t  the barrier have also been plotted. However, the boundary between 
the regions E and F of the depleted monolayer, as well as the lines of constant layer 
length in these regions E and F ,  have not been plotted as their form depends upon 
the specific (v, H )  relation for the monolayer. It is also found for:this example that the 
gravity viscous regime for a laminar boundary layer (region A )  does not extend beyond 
a value of U = 18.7 cm s-l at  which point the effect of substrate pressure variations 
[determined by (5.15)] become important. All the other limitations of the theory 
[determined by (5.3), (64, (5.12) and (5.17)] also shown in figure 8, are seen to occur 
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FIGURE 9. Experimentally obtained values (Huh et al. 1975) of dimensionless length df  I/D of 
oil spreading along a channel as a function of dimensionless time t/T for: 0 ,  V = 0.105 cme, 
pl/pl = 60cSt; ., V = 0.105cma, ,ul/pl = 10cSt; A, V = 0J7cm2, ,ul/pl = 1OcSt; 0, V = 1.75 
eme, pl/pI = 10cSt; 0,  V = 3.50cm2, ,ul/pl = 10cSt; A, V = 6.99cme, pl/pI = 10cSt. The 
continuous line is theoretical result based on quasi-static assumption. -- -, asymptotic form for 
smallt/Tgiven by (7 . lb ) ,  ---,asymptoticfomforlarget/l'given by (7 .2b ) .  

at higher values of U. The gravity viscous regime with turbulent boundary layer 
(region B )  does not extend beyond U = 9.5cms-l [given by (6.14)] a t  which the 
slope of the oil-water interface becomes large. However, at  large oil volumes (V > 
1.23 x 10som2) the upper limit of U is determined by the condition (6.11) for small 
velocity variations across the oil layer. The other conditions of validity of the 
theory [determined by equations (6.16) and (6.18)] also shown in figure 8, are seen to 
occur at higher values of U .  Beyond these upper limits of U for which the theory is 
valid (denoted by region G ) ,  the various effects discussed in Q 5 would become important 
so that the general theory would have to be modified accordingly. 

However, it should be emphasized that the boundaries between the regimes are 
not really sharp as shown in figure 8 since for values of U and V near a boundary line, 
regions corresponding to the regimes on either side of the boundary line can be expected 
to exist simultaneously. For example, near the boundary line between regimes A and 
C, one would have a gravity viscous region near the barrier and a monolayer region 
further from the barrier (separated from each other by a small surface tension region). 
Furthermore, it should be mentioned that what is shown in figure 8 is merely an 
example and that spreading fluids with different physical properties could have U V  
diagrams which are significantly different. Thus, while in the present example, the 
surface tension region is never dominant, there may be other spreading fluids for 
which it is for some region of the U V diagram. 
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From these results (and those in $9 4-6) one can determine for any spreading fluid, 
the maximum volume of oil that can be held back by a containment boom of a given 
depth deployed across a stream flowing with a given velocity U (so long as U is not 
so large that one is within the unknown region G ) .  

While there appears to be no quantitative experimental results which can be 
directly compared with the results of the above theory, it is interesting to note that 
when these results are applied to the unsteady spreading of oil on the surface of 
quiescent water contained in a channel (by assuming that such spreading is quasi- 
steady) good agreement between theory and experiment is obtained (see Huh, Inoue 
& Mason, 1975). Thus by integrating numerically 

with d given by (4.3) and with 1 by (4.28) a relation between (d + I )  and t is obtained. 
This is plotted in figure 9 together with experimental results using the same dimen- 
sionless quantities as used by Huh et al. (1975), namely (d + Z)/D and t /T ,  where 

D = 6v/4(2S/Pi(l -Pi/Pz) S)* 
and 

The asymptotic form for small t (for which 1 @ d),  obtained from (4.30) with U = dl/dt ,  

or 
( 7 . 1 ~ )  

(7.lb) 

This is also plotted in figure 9. The experimental results of Suchon (1970) agrees well 
with the above equation ( 7 . 1 ~ )  (see Hoult 1972) but have not been plotted on figure 
9 since the value of S was not known for the liquids used. The asymptotic form for 
large t (for which d I )  is obtained from (4.3) with U = d ( d ) / d t  as 

or 
d+Z 4 2  t 3 - = 6) 6) = 1.241 ($)', D 

( 7 . 2 ~ )  

(7.2b) 

This is also plotted on figure 9 for comparison. 
The physical properties of the liquids used in the experimental results shown in 

figure 9 have been tabulated in table 1 from which it is seen that the experiments 
covered a range of l / d  from 0-017 to 1.67. In particular the range of velocity U is 
shown for each experiment together with the conditions on U [given by (5.3), (5.9), 
(5.12), (5.15), (5.17) and (5.19)] for the validity of the theory. It is seen that all con- 
ditions are satisfied except for the experiments with high values of U (i.e. small values 
of 1 and d )  with an oil volume of 6.99 cm2 for which inertia effects within the oil may 
be important. Although it may appear that inertia effects may not be negligible for 
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Symbol used in figure 9 . . . A 0 0 A 
Oil viscosity p1 (P) 0.48 0.0934 0.0934 0.0934 0.0934 0.0934 
Oil density p, (g cm-a) 0.96 0.934 0.934 0.934 0.934 0.934 
Oil volume V (cm*) 0.105 0.105 0.70 1-75 3.50 6.99 
Spreading coefficient S 16.4 11.9 11.9 11.9 11.9 11.9 

Oil-water interfacial tension 34-3 3 9 6  39.5 39.5 39.5 39.5 

Range of monolayer 28.4 31.8 26.2 23.9 18-0 8.3 

(dyncm-l) 

cr18 (dyne cm-1) 

length d (cm) - 109.6 -106.3 - 103.4 -91.6 -91.5 -77.5 

length 1 (cm) -1.84 -2.39 -7.8 -12.8 - 19.9 -33.7 
Range of bulk layer 1.19 1.16 4.4 7.4 11.2 13.9 

Range of values of l / d  0.017 0.022 0.075 0.14 0.22 0.43 
-0.042 -0.051 -0.17 -0.31 -0.62 -1.67 

Range of velocity U (cm 8-1) 8.2 6.7 6.8 7.0 7.1 7.5 
-12.9 -10.0 -10.7 -11.0 -12.1 -15.7 

Conditions of validity: 
Small velocity variation 
&cross oil layer [see (5.3)], 
U (cm s-l) c 34.5 15.8 15.8 15.8 15.8 15.8 

[sea (5.9)] U (oms-') < 39.7 40.1 40.1 40.1 40.1 40.1 
Small slopes of interfaces 

Neglect of inertia effects 
in oil layer [see (5.12)], 

Neglect of inertia effects 
in water, (i) condition 
(5.15), U(cnis-l) c 30-9 28.6 28.6 28.6 28-6 28.6 
(ii) condition (5.17), 

U (oms-l) c 340.0 245.0 245.0 245-0 245.0 245.0 

[see (5.19)], U (cms-l) > 3.2 2.3 2.3 2.3 2.3 2.3 

U (cm 8-l) < 18.2 11.0 11.0 11.0 11.0 11.0 

Boundary layer is laminar 

TABLE 1. Comparison between the experimental situations examined by Inoue, Huh C Mason 
(1975) and the corresponding conditions of validity of the theory. 

smaller oil volumes, this is not so, since the position 2 = 8 where inertia effects become 
large does not exist owing to the small values of l / d .  
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